

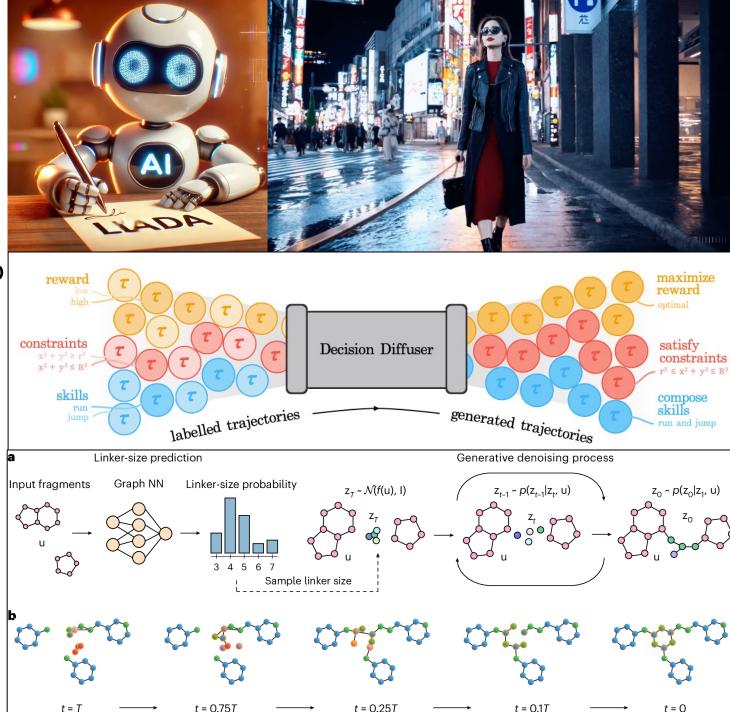
Learning Process & Sampling Complexity of Diffusion Models

Shuai Li

2025.11

Diffusion Models

- Vision: Sora, etc.
 - SOTA result: Image, 3D, video
- Language: LLaDA
- Multi-modal Models: MMaDA
- Reinforcement Learning
- Al4Science
- [1] NZYZOHZLWL, Large Language Diffusion Models, ICLR 2025 DeLTa Workshop, Oral.
- [2] YTLZSTW, Multimodal Large Diffusion Language Models, NeurIPS 2025.
- [3] ADGTJA, Is Conditional Generative Modeling all you need for Decision Making?, ICLR 2023.
- [4] ISVSSFWBC, Equivariant 3D-conditional diffusion model for molecular linker design, Nature Machine Intelligence 2024.



Theory Helps Training & Sampling

- Solid theoretical foundation helps efficient training & fast sampling:
- Theoretical SDE framework of diffusion family unifies training & sampling^[1]
- New training paradigm with SOTA performance: Flow-matching^[2]
- $10 \times$ Faster sampling algorithm: DPM-Solvers series^[3], Analytic-DPM^[4]

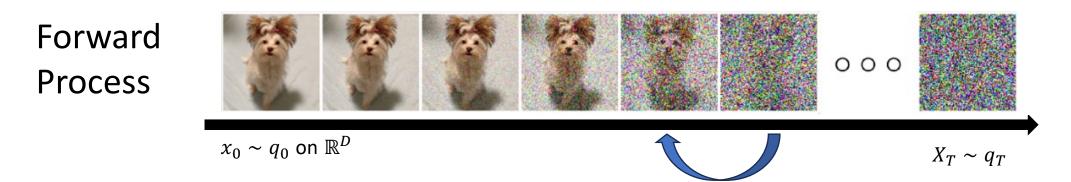
^[1] SDKKEP, Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021.

^[2] LG, Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023.

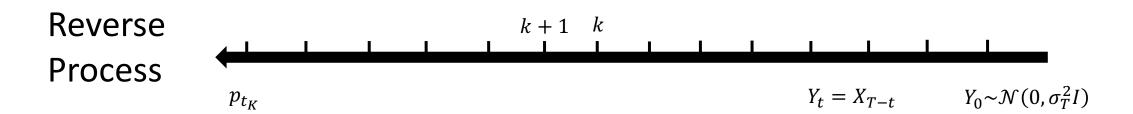
^[3] LZBCLZ, Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps, NeurIPS 2022.

^[4] BLZZ, Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, ICLR 2022.

Paradigm of Multi-step Diffusion Models



Core Problem 1: Training Process to Learn Denoising

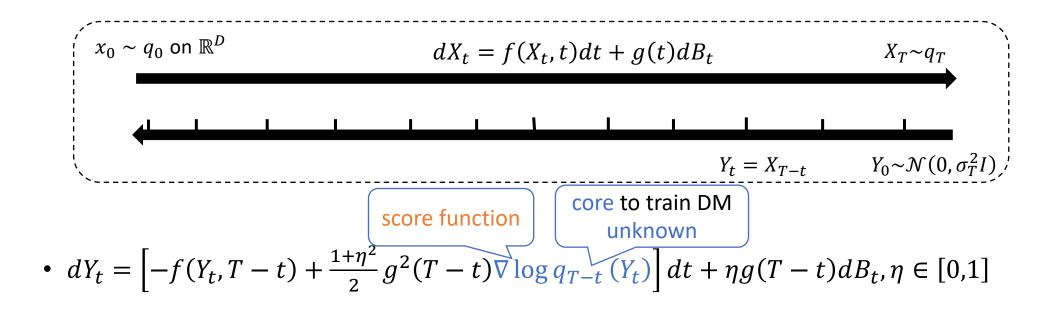


Core Problem 2: Sampling Complexity K

Overview

- Pretraining: Efficient Multi-manifold MoG Model
- Fine-tuning: Good Sharing Latent Guarantees Few-shot Efficiency
- Sampling: Complexity for Multi-step Diffusion Models
- Discretization: Complexity of 1-step Models in Training Phase

Mathematical Framework of Diffusion Models



Score matching training objective:

$$\min_{s \in \mathcal{F}} \hat{\mathcal{L}}(s) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{T - \delta} \int_{\delta}^{T} \mathbb{E}_{X_{t}|X_{0} = X_{i}} \left[\|\nabla \log q_{t}(X_{t}|X_{0}) - s(X_{t}, t)\|_{2}^{2} \right] dt$$

conditional distribution

Learning Faces Curse of Dimension

- Minimiser $s_{\theta} \in \operatorname{argmin}_{\Theta} \hat{\mathcal{L}}(s)$ satisfies
 - Estimation Error= $\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_t} \left[\|\nabla \log q_t(X_t) s_{\theta}(X_t, t)\|_2^2 \right] dt < O(n^{-1/D})$

 $D = 3 \times 256 \times 256 \approx 2 \times 10^5$

covering number &

concentration

- Good training requires training data size $n = O(10^{10^5})$ Huge!!
- Efficient training needs utilizing data structure!

Data Structures: Existing Works

Manifold Modeling	Latent		# of Parameters	Estimation Error
Full Space [1]	General	X	$O(D^{D+1})$	$O(n^{-1/D})$
Full Space [2]	Mixture of Gaussian (MoG)	$X \sim \sum_{m=1}^{M} \pi_m \mathcal{N}(\mu_m, \Sigma_m)$	$O(MD^2)$	$O(\frac{\sqrt{DM}}{\sqrt{n}})$
Low-dim manifold [3]	General	$X = Az$, with $A \in \mathbb{R}^{D \times d}$	$O(Dd + d^{d+1})$	$O(n^{-\frac{2}{d}})$
Multi-manifold	General	$X = \sum_{\ell=1}^L \pi_\ell A_\ell z_\ell$, with $A_\ell \in \mathbb{R}^{D imes d}$	$O(LDd + Ld^{d+1})$	$O(\sqrt{L}n^{-\frac{2}{d}})$
Multi-manifold [4]	Gaussian	$X \sim \sum\nolimits_{\ell = 1}^L {{\pi _\ell }\mathcal{N} \left({ \cdot ;0,A_\ell A_\ell ^\top } \right)}$	O(LDd)	$O(\frac{\sqrt{dL}}{\sqrt{n}} + Const)$

^[1] OAS, Diffusion Models are Minimax Optimal Distribution Estimators, ICML 2023.

^[2] SCK, Learning mixtures of gaussians using the ddpm objective, NeurIPS 2023.

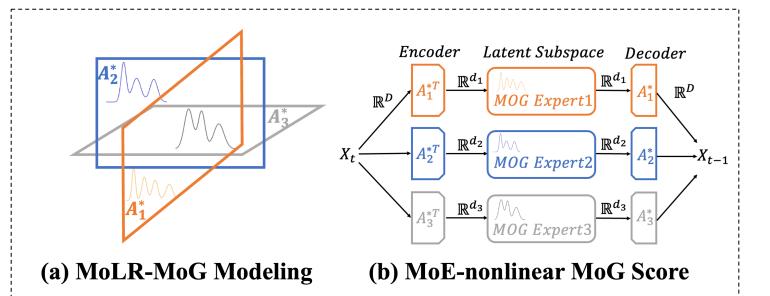
^[3] CHZW, Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data, ICML 2023.

^[4] WZZCMQ. Diffusion models learn low-dimensional distributions via subspace clustering, NeurIPS 2024 M3L Workshop.

Multi-manifold Mixture-of-Gaussian Modeling

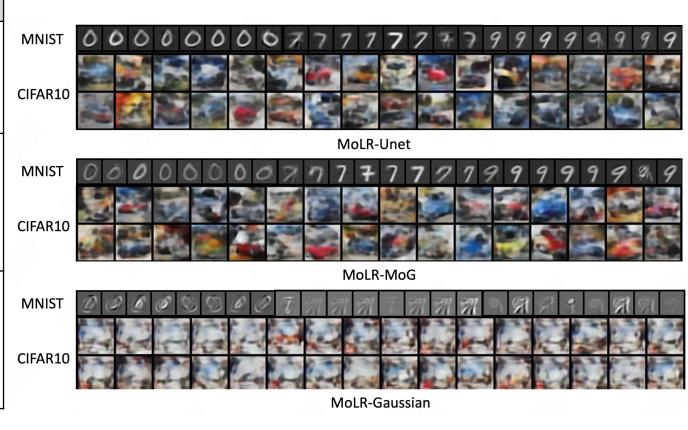
- $X \sim \sum_{\ell=1}^{L} \pi_{\ell} \sum_{m=1}^{M} \pi_{\ell,m} \mathcal{N}(\cdot; A_{\ell} \mu_{\ell,m}, A_{\ell} \sum_{\ell,m} A_{\ell}^{\mathsf{T}})$ Most general!
- Theorem. Its estimation error satisfies

$$\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_t} \left[\|\nabla \log q_t(X_t) - s_{\theta}(X_t, t)\|_2^2 \right] dt < O\left(\frac{\sqrt{LM}\sqrt{dL}}{\sqrt{n}}\right)$$



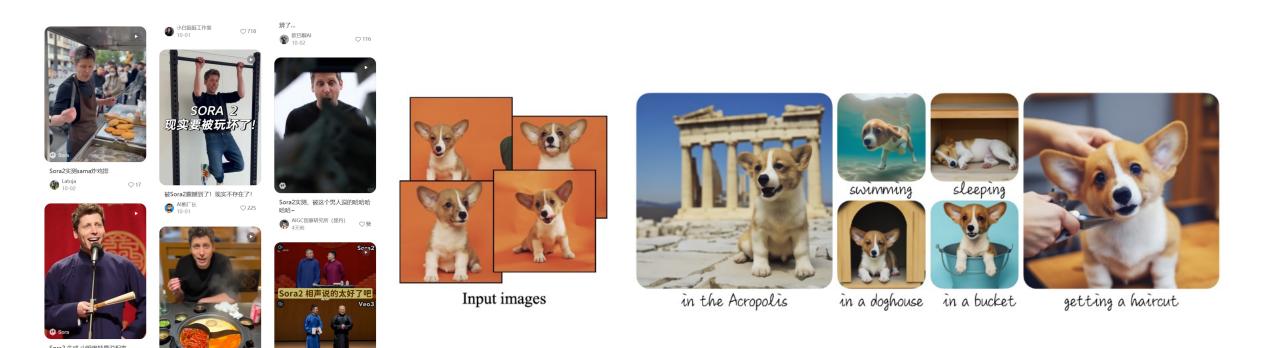
Much Smaller Model w/ Sufficiently Good Performance

Latent	# of Parameters	Estimation Error	MNIST Acc/ Performance		
General	$O(LDd + Ld^{d+1})$	$O(\sqrt{L}n^{-\frac{2}{d}})$	0.96 √ Deep NN		
Mixture of Gaussian	$O(LDd + Ld^2)$	$O\left(\frac{\sqrt{LM}\sqrt{dL}}{\sqrt{n}}\right)$	0.89 √ 2-layer NN		
Gaussian	O(LDd)	$O(\frac{\sqrt{dL}}{\sqrt{n}} + \text{Const})$	0.08× Linear NN		



Overview

- Pretraining: Efficient Multi-manifold MoG Model
- Fine-tuning: Good Sharing Latent Guarantees Few-shot Efficiency
- Sampling: Complexity for Multi-step Diffusion Models
- Discretization: Complexity of 1-step Models in Training Phase



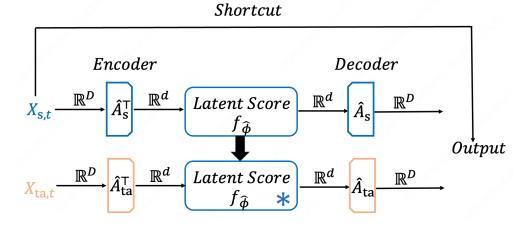
Few-shot Fine-tuning is key to the customized creation but no theory supports effective information sharing

Few-shot Fine-tuning

- Pretrain w/ large source data (2.3 Billion): $\{X_{s,i}\}_{i=1}^{n_s} \sim q_0^s$ on \mathbb{R}^D
- $\min_{\mathbf{e.g.}} \hat{\mathcal{L}}_{\mathbf{s}}(s) = \frac{1}{n_{\mathbf{s}}} \sum_{i=1}^{n_{\mathbf{s}}} \frac{1}{T \delta} \int_{\delta}^{T} \mathbb{E}_{X_{t}|X_{0} = X_{s,i}} \left[\|\nabla \log q_{t}^{s}(X_{t}|X_{0}) s(X_{t}, t)\|_{2}^{2} \right] dt$ Estimation error $O(n_s^{-\frac{2}{d}})$ Tolerable!
 - Fine-tune with limited target data (~10 images): $\{X_{\mathsf{ta},i}\}_{i=1}^{n_{\mathsf{ta}}} \sim q_0^{\mathsf{ta}}$
- $\min_{\mathbf{e.g. 1.5M}} \hat{\mathcal{L}}_{\mathsf{ta}}(s) = \frac{1}{n_{\mathsf{ta}}} \sum_{i=1}^{n_{\mathsf{ta}}} \frac{1}{T \delta} \int_{\delta}^{T} \mathbb{E}_{X_{t} \mid X_{0} = X_{\mathsf{ta}, i}} \left[\|\nabla \log q_{t}^{\mathsf{ta}}(X_{t} \mid X_{0}) s(X_{t}, t)\|_{2}^{2} \right] dt$ • Estimation error $O(n_{ta}^{\frac{2}{d}})$ Meaningless!

Information-sharing Model Design

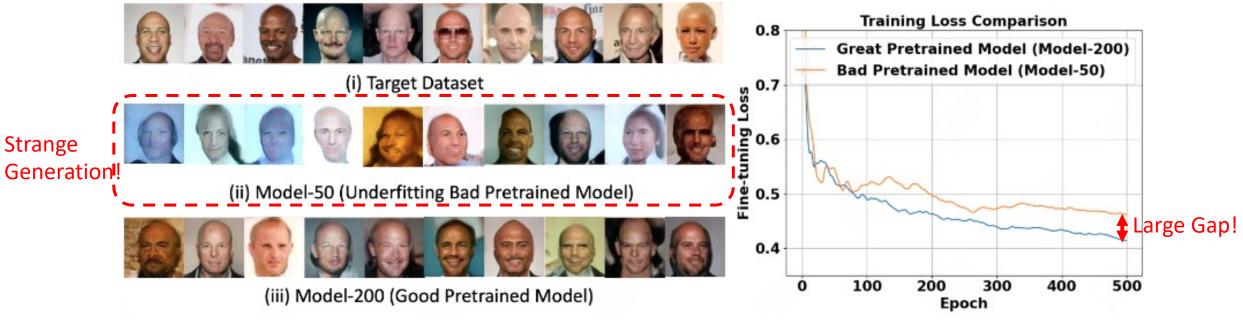
- Empirical works share most parameters and fine-tune key parameters
- Assumption. The source and target data admit linear structure and share latent space $X_s = A_s z$ and $X_{ta} = A_{ta} z, z \in \mathbb{R}^d$



Then the score function is

$$\nabla \log q_t^{\text{ta}}(X) = A_{\text{ta}} \nabla \log q_t^{\text{Latent}} (A_{\text{ta}}^{\mathsf{T}} X) - \frac{1}{\sigma_t^2} (I_D - A_{\text{ta}} A_{\text{ta}}^{\mathsf{T}}) X$$
Shared
Latent Score

Bad Latent Leads to Large Estimation Error



Theorem. W/ bad latent

$$\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_t^{\text{ta}}} \left[\|\nabla \log q_t^{\text{ta}}(X_t) - s_{\theta}(X_t, t)\|_2^2 \right] dt \ge \text{Const}$$

Bad Latent Suffers Bad Local Minima

Fine-tuning Results based on Great Pre-trained Models (SD3 Medium)

Fine-tuning Results based on *Overfitting* Bad Pre-trained Models (SD3 Medium with 1k overfitting steps)

A cat on top of a wooden floor

A cat in a chef outfit A cat with a city in the background

A cat wearing a yellow shirt

A cat in a police outfit

Prompt cat but results in dog figure

Bad latent fails to fit target feature!

• Theorem. W/ bad latent,
$$\exists s_{\theta}^{\text{few-shot}} \neq s_{\theta^*}^{\text{few-shot}} \text{ s.t. } \frac{\partial s_{\theta}^{\text{few-shot}}}{\partial \theta} \approx 0$$

Good Latent Secures Efficiency

Theorem. The estimation error of few-shot diffusion model is

$$\frac{1}{T-\delta} \int_{\delta}^{T} \mathbb{E}_{q_{t}^{\text{ta}}} \left[\left\| \nabla \log q_{t}^{\text{ta}}(X_{t}) - s_{\hat{A}_{\text{ta}}, \hat{\phi}}(X_{t}, t) \right\|_{2}^{2} \right] dt \leq O\left(n_{\text{ta}}^{-\frac{1}{2}} + n_{s}^{-\frac{2}{d}}\right)$$
Guarantee good latent

• $O\left(n_{+2}^{-\frac{1}{2}}\right)$ explains why 5 – 8 images are enough for few-shot finetuning

Table 1: The requirement of n_{ta} in popular datasets. We use latent dimension in Pope et al. (2021).

Dataset	CIFAR-10	CIFAR-100	CelebA	MS-COCO	ImageNet
Dataset Size	6×10^{4}	6×10^{4}	2×10^5	3.3×10^{5}	1.2×10^{6}
Latent Dimension	25	22	24	37	43
The Requirement of n_{ta}	6	8	8	5	5

Good Latent Leads to Good Landscape

• Theorem. With a good shared latent, the landscape of the few-shot optimization is κ -strongly convex w/ convergence rate

$$\left\| \hat{A}_{ta}^{(i)} \hat{A}_{ta}^{(i)\top} - A_{ta} A_{ta}^{\top} \right\|_{F} \le \left(\frac{\kappa - 1}{\kappa + 1} \right)^{i} \|A_{ta}\|_{F} \left\| \hat{A}_{ta}^{(0)} - A_{ta} \right\|_{F}$$

Overview

- Pretraining: Efficient Multi-manifold MoG Model
- Fine-tuning: Good Sharing Latent Guarantees Few-shot Efficiency
- Sampling: Complexity for Multi-step Diffusion Models
- Discretization: Complexity of 1-step Models in Training Phase

Common Forward Processes

$$dX_t = f(X_t, t)dt + g(t)dB_t \qquad T$$

		Trajectory	Forward Distribution	
Variance Preserving (VP) [1]	$f(X_t, t) = -\frac{1}{2}X_t$ $g(t) = 1$		$\mathcal{N}(0,I_D)$	stability.ai Midjourney
Variance Exploding (VE-SMLD) [2]	$f(X_t, t) = 0$ $g(t) = \sqrt{2}$		$\mathcal{N}(0,TI_D)$	Stanford University
Variance Exploding (VE-EDM) [3]	$f(X_t, t) = 0$ $g(t) = \sqrt{2t}$		$\mathcal{N}(0, T^2I_D)$	
Rectified Flow (RF) [4]	$X_t = (1-t)X_0 + tZ$ $t \in [0,1]$		$\mathcal{N}(0, I_D)$	

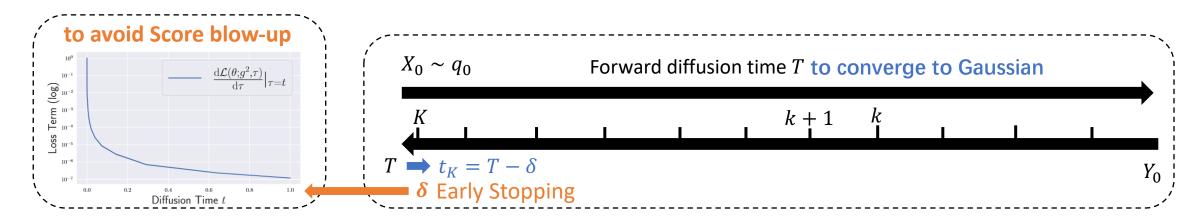
^[1] HJA, Denoising diffusion probabilistic models, NeurIPS 2020.

^[2] SE, Generative modeling by estimating gradients of the data distribution, NeurIPS 2019.

^[3] KAAL, Elucidating the Design Space of Diffusion-Based Generative Models, NeurIPS 2022.

^[4] LG, Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023.

Sampling Complexity: Objective



• Objective:

With accurate score $\|\nabla \log q_t(X) - s_{\theta}(X, t)\|_2^2 \le \epsilon_{\text{score}}^2$ Minimize sample complexity K s.t.

$$\mathrm{KL}(p_{t_K}, q_{\delta}) \le \epsilon_{\mathrm{KL}}^2 \text{ and } W_2^2(q_0, q_{\delta}) \le \epsilon_{W_2}^2$$

Sample Complexity: General Guarantee for Reverse SDE

Theorem. Sample complexity can be divided by

Convergence of Forward Process
$$\text{KL}(p_{t_K}, q_{\delta}) \leq \text{KL}(\mathcal{N}(0, \sigma_T^2), q_T) + \sum_{k=0}^{K-1} \mathbb{E}_{q_{t_k}(x)} \text{KL}\left(p_{t_{k+1}|t_k}(\cdot \mid x), q_{t_{k+1}|t_k}(\cdot \mid x)\right) \\ \leq D^2 m_T / \sigma_T^2 + D^2 (T/\delta)^{\frac{1}{a}} / K \leq \tilde{O}\left(\epsilon_{\text{KL}}^2\right)$$

• Then the sample complexity requires $K=O(D^2(T/\delta)^{\frac{1}{a}}/\epsilon_{\rm KL}^2)$ where δ satisfies

$$W_2^2(q_0, q_\delta) \le \sigma_\delta^2 \le \epsilon_{W_2}^2$$

Sample Complexities

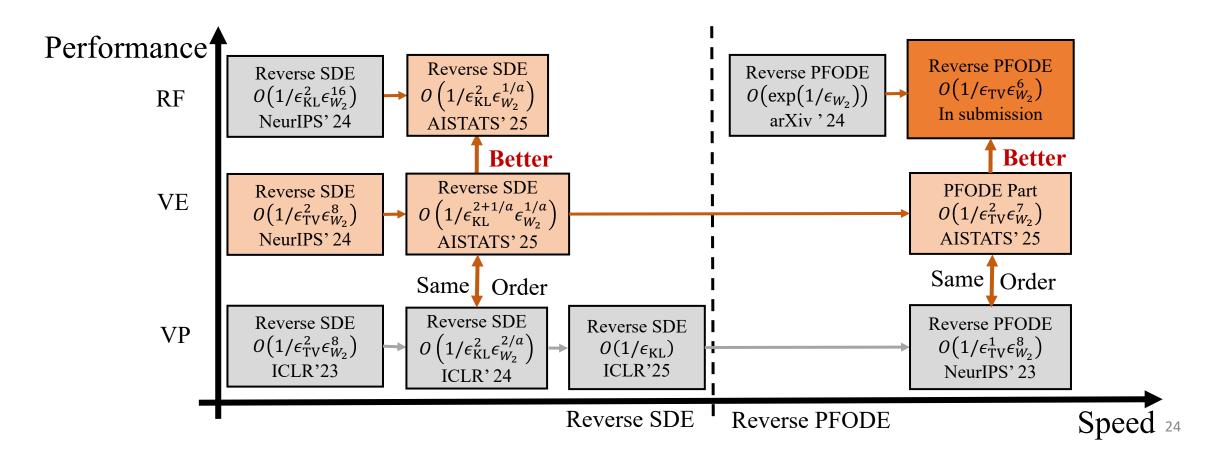
	m_T	σ_T^2	$T: \\ \text{KL}(\mathcal{N}(0, \sigma_T^2), q_T) \\ \leq \frac{m_T}{\sigma_T^2} \leq \epsilon_{\text{KL}}^2$	σ_δ^2	$\delta: \\ W_2^2(q_0, q_\delta) \leq \\ \sigma_\delta^2 \leq \epsilon_{W_2}^2$	K : $O(D^2(T/\delta)^{\frac{1}{a}}/\epsilon_{\mathrm{KL}}^2)$
VP	e^{-T}	$1 - e^{-2T}$	$\log(1/\epsilon_{\mathrm{KL}})$	δ	$\epsilon_{W_2}^2$ ×	$O\left(D^2/\epsilon_{\mathrm{KL}}^2\epsilon_{W_2}^{2/a}\right)$
VE (SMLD)	1	T	$1/\epsilon_{\mathrm{KL}}^2$	δ	$\epsilon_{W_2}^2$ ×	$O\left(D^2/\epsilon_{\mathrm{KL}}^{2+2/a}\epsilon_{W_2}^{2/a}\right)$
VE (EDM)	1	T^2	$1/\epsilon_{\mathrm{KL}}$ ×	δ^2	ϵ_{W_2} V	$O\left(D^2/\epsilon_{\mathrm{KL}}^{2+1/a}\epsilon_{W_2}^{1/a}\right)$
RF	1	1	1√	δ^2	ϵ_{W_2} V	$O\left(D^2/\epsilon_{\mathrm{KL}}^2\epsilon_{W_2}^{1/a}\right)$

- VP better in T and VE (EDM) better in δ
- ullet RF better in both T and δ and thus has a better complexity

Results Extend to PRODE

- [1] YWJL, Leveraging drift to improve sample complexity of variance exploding diffusion models. NeurIPS 2024.
- [2] YJL, The Polynomial Iteration Complexity for Variance Exploding Diffusion Models: Elucidating SDE and ODE Samplers. AISTATS 2025.
- [3] YZJCL, Elucidating Rectified Flow with Deterministic Sampler: Polynomial Discretization Complexity for Multi and One-step Models. Arxiv.

Reverse SDE generate diverse samples while PFODE generate fast



Overview

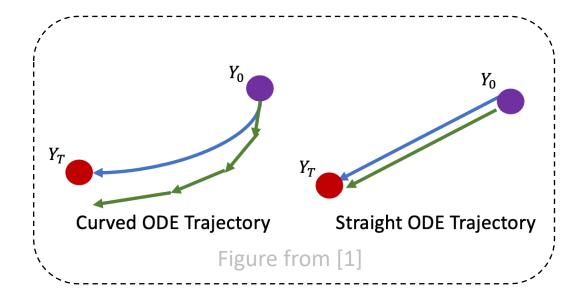
- Pretraining: Efficient Multi-manifold MoG Model
- Fine-tuning: Good Sharing Latent Guarantees Few-shot Efficiency
- Sampling: Complexity for Multi-step Diffusion Models
- Discretization: Complexity of 1-step Models in Training Phase

Linear Trajectory & PFODE Achieve 1-step Generation

PFODE generate deterministically compared to reverse SDE

VE-EDM and RF have linear trajectory

Variance Exploding (VE-EDM) [3]	$f(X_t, t) = 0$ $g(t) = \sqrt{2t}$	
Rectified Flow (RF) [4]	$X_t = (1-t)X_0 + tZ$ $t \in [0,1]$	



1-Step Mapping Function from Multi-step

For PFODE reverse process of multi-step diffusion models

$$dY_t = v(Y_t, t)dt, Y_0 \sim q_T$$

the corresponding 1-step mapping function (by integral) is

$$f(Y_t, t) = Y_{T-\delta} = X_{\delta} \approx X_0, \forall t \in [0, T-\delta]$$
to avoid Score blow-up

• Use NN $f_{\theta}(Y_t, t)$ to approximate 1-step mapping function f

What is a Good Optimization Objective?

Consistency distillation to learn good 1-step mapping [1]

$$\mathcal{L}_{\mathrm{CD}}^{K}(\boldsymbol{\theta},\boldsymbol{\theta}^{-};\boldsymbol{\phi}) := \mathbb{E}_{X_{0}} \left[\mathbb{E}_{Y_{t_{k}}\mid X_{0}} \left\| \boldsymbol{f}_{\boldsymbol{\theta}} \big(Y_{t_{k}}, t_{k} \big) - \boldsymbol{f}_{\boldsymbol{\theta}^{-}} \big(\hat{Y}_{t_{k+1}}^{\boldsymbol{\phi}}, t_{k+1} \big) \right\|_{2}^{2} \right]$$

$$f_{\boldsymbol{\theta}} \big(Y_{t_{k}}, t_{k} \big)$$

$$f_{\boldsymbol{\theta}^{-}} \big(\hat{Y}_{t_{k+1}}^{\boldsymbol{\phi}}, t_{k+1} \big)$$

$$1-\text{step Mapping}$$

$$1-\text{step Mapping}$$

$$1-\text{step Mapping}$$

• Minimize K s.t. $W_2^2(f_\theta(\mathcal{N}(0, \sigma_T^2 I_d), 0; K), q_0) \le \epsilon_{W_2}^2$

Similar Balance

[1] LCF, Sampling is as easy as keeping the consistency: convergence guarantee for consistency models, ICML 2024

[2] DCWY, Theory of consistency diffusion models: Distribution estimation meets fast sampling, ICML 2024

[3] LHW, Towards a mathematical theory for consistency training in diffusion models. AISTATS 2025

[4] YJVL, Improved Discretization Complexity Analysis of Consistency Models: Variance Exploding Forward Process and Decay Discretization Scheme, ICML 2025 [5] YZJCL, Elucidating Rectified Flow with Deterministic Sampler: Polynomial Discretization Complexity for Multi and One-step Models, Arxiv.

Theorem. For 1-step generation models,

$$W_2^2(f_\theta(\mathcal{N}(0,\sigma_T^2I_d),T-\delta),q_0) \leq \frac{m_T}{\sigma_T^2} + \frac{L_f^2(T/\delta)^{\frac{2}{a}}}{K^2\delta^4} + \sigma_\delta^2 \leq \epsilon_{W_2}^2$$
• Then it requires discretization complexity $K = O\left(L_f(T/\delta)^{\frac{1}{a}}/\left(\delta^2\epsilon_{W_2}\right)\right)$

	$\frac{T}{\sigma_T^2} \le \epsilon_{W_2}^2$	$\begin{array}{c c} \boldsymbol{\delta}: \\ \sigma_{\delta}^2 \leq \epsilon_{W_2}^2 \end{array}$	$K:$ $O(L_f(T/\delta)^{\frac{1}{a}}/(\delta^2\epsilon_{W_2}))$	<u></u>		1	$O\left(L_f/\epsilon_{W_2}^{3+1/a} ight)$ RF based In submission [5]
VP	$\log(1/\epsilon_{W_2})$	$\epsilon_{W_2}^2$ ×	$O\left(L_f/\epsilon_{W_2}^{5+2/a}\right)$	$O(L_f/\epsilon_{W_2}^7)$ VP based	0(131	l I	Better
VE (EDM)	$1/\epsilon_{W_2}$ ×	ϵ_{W_2} V	$O\left(L_f/\epsilon_{W_2}^{3+2/a}\right)$	$\begin{array}{c c} & \text{ICML' 24 [1]} \\ \hline & O\left(L_f^2/\epsilon_{W_1}^{10}\right) \end{array}$	$O(L_f^3/\epsilon_{W_1})$ VP based [3] AISTATS'25	I 	$O\left(L_f/\epsilon_{W_2}^{3+2/a} ight)$ VE (EDM) based
RF	1√	ϵ_{W_2} V	$O\left(L_f/\epsilon_{W_2}^{3+1/a}\right)$	VP based ICML' 24 [2]		Better	ICML'25 [4]

Conclusions

- Pretraining: Efficient Multi-manifold MoG Model
 - Empirical: Much less parameters with good enough performance
 - Theoretical: Estimation error escape the curse of dimensionality
- Fine-tuning: Good Sharing Latent Guarantees Few-shot Efficiency
 - Model the sharing scheme between pretraining and few-shot fine-tuning
 - Show effect of latent quality on estimation and optimization
- Sampling: Complexity for Multi-step Diffusion Models
 - Unified framework for sampling complexities of VP, VE, RF models
- Discretization: Complexity of 1-step Models in Training Phase
 - Support good performances of RF models

Future Work

- Pretraining Phase
 - SOTA Results with Multi-manifold MoG Modeling and Fewer Parameters
 - Global Optimization Guarantee and Generalization Mechanism
- Few-shot Fine-tuning Phase
 - Multi-task Meta-learning and Few-shot Fine-tuning Framework and Analysis
- Sampling Process of Multi-step Diffusion Models
 - Conditional Generation: Analysis of influence additional guidance
- Learning Process of 1-Step Generative Models
 - With the simplified MoG latent of Multi Subspace MoG modeling, better training and SOTA Results

Thanks!

Shuai Li

- **Associate Professor**
- Shanghai Jiao Tong University
- Research: RL/ML theory
- https://shuaili8.github.io/

Collaborators:

Ruofeng Yang Zhijie Wang

Yongcan Li

Zhaoyu Zhu

Bo Jiang

Baoxiang Wang Cheng Chen

Ruinan Jin

Questions?